首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased Molecular Mass of Hemicellulosic Polysaccharides is Involved in Growth Inhibition of Maize Coleoptiles and Mesocotyls under Hypergravity Conditions
Authors:Kouichi Soga  Keita Harada  Kazuyuki Wakabayashi  Takayuki Hoson  Seiichiro Kamisaka
Institution:(1) Department of Biology, Faculty of Science, Osaka City University, Sugimoto 3, Sumiyoshi-ku, Osaka, 558–8585 Japan, JP
Abstract:Zea mays L. cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight-average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of β-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of β-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls. Received 22 February 1999/ Accepted in revised form 20 April 1999
Keywords:: Cell wall extensibility  Coleoptile  Hypergravity  Maize (Zea mays)  Mesocotyl  Molecular mass of hemicellulosic          polysaccharides
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号