首页 | 本学科首页   官方微博 | 高级检索  
     


Down-regulation of neprilysin (EC3.4.24.11) expression in vascular endothelial cells by laminar shear stress involves NADPH oxidase-dependent ROS production
Authors:Paul A. Fitzpatrick   Anthony F. Guinan   Tony G. Walsh   Ronan P. Murphy   Maria T. Killeen   Nicholas P. Tobin   Adrian R. Pierotti  Philip M. Cummins  
Affiliation:aSchool of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland;bSchool of Health & Human Performance, Dublin City University, Dublin, Ireland;cDepartment of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
Abstract:Neprilysin (NEP, neutral endopeptidase, EC3.4.24.11), a zinc metallopeptidase expressed on the surface of endothelial cells, influences vascular homeostasis primarily through regulated inactivation of natriuretic peptides and bradykinin. Earlier in vivo studies reporting on the anti-atherosclerotic effects of NEP inhibition and on the atheroprotective effects of flow-associated laminar shear stress (LSS) have lead us to hypothesize that the latter hemodynamic stimulus may serve to down-regulate NEP levels within the vascular endothelium. To address this hypothesis, we have undertaken an investigation of the effects of LSS on NEP expression in vitro in bovine aortic endothelial cells (BAECs), coupled with an examination of the signalling mechanism putatively mediating these effects. BAECs were exposed to physiological levels of LSS (10 dynes/cm2, 24 h) and harvested for analysis of NEP expression using real-time PCR, Western blotting, and immunocytochemistry. Relative to unsheared controls, NEP mRNA and protein were substantially down-regulated by LSS (≥50%), events which could be prevented by treatment of BAECs with either N-acetylcysteine, superoxide dismutase, or catalase, implicating reactive oxygen species (ROS) involvement. Employing pharmacological and molecular inhibition strategies, the signal transduction pathway mediating shear-dependent NEP suppression was also examined, and roles implicated for Gβγ, Rac1, and NADPH oxidase activation in these events. Treatment of static BAECs with angiotensin-II, a potent stimulus for NADPH oxidase activation, mimicked the suppressive effects of shear on NEP expression, further supporting a role for NADPH oxidase-dependent ROS production. Interestingly, inhibition of receptor tyrosine kinase signalling had no effect. In conclusion, we confirm for the first time that NEP expression is down-regulated in vascular endothelial cells by physiological laminar shear, possibly via a mechanotransduction mechanism involving NADPH oxidase-induced ROS production.
Keywords:Neprilysin   Endothelium   Laminar shear stress   NADPH oxidase   Reactive oxygen species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号