首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Root Growth Effects on Soluble C and P in Manured and Non-manured Soils
Authors:A Piper  M S Erich  G A Porter  T S Griffin
Institution:(1) Department of Plant, Soil, and Environmental Sciences, University of Maine, Orono, ME 04469, USA;(2) USDA-ARS New England Plant Soil and Water Lab, Orono, ME 04469, USA
Abstract:There is limited research on relationships between root characteristics and soil chemical properties and processes. Because previous studies have shown specific C compounds may release previously sorbed P and make P more plant-available, crops which contribute to high soil C levels could play an important role in soil P cycling. The objectives of this study were to determine (1) whether rotation crops had different amounts of root growth, (2) whether different amounts of root growth among the crop species could be related to different levels of soluble soil C and (3) whether there were differences in P concentration among the soils under different crops that could be related to soluble C soil concentration. Roots and soil from potato (Solanum tuberosum L.), barley (Hordeum vulgare L.), soybean (Glycine max (L.) Merr.), and a forage consisting of alfalfa (Medicago sativa L.) and timothy (Phleum pretense L.) were sampled from the Aroostook Research Farm in Presque Isle, Maine, during the summers of 2003 and 2004 to determine root length density (RLD) and soluble C and P concentrations. Half of the sampled plots were amended with beef manure and half were not amended. Barley and forage consistently had higher RLD than potato or soybean crops. Barley and forage typically had higher concentrations of soluble soil C than potato or soybean, but the differences were significant at only three of the five sampling dates. RLD was significantly correlated to soluble C (r=0.56) only for amended soils on the August 2003 sampling date. For other dates r values were non-significant and ranged from 0.32 to 0.49. As with soil C, soluble soil P levels were typically higher in barley and forage than in potato or soybean crops. Significant differences were detected at four of the five sampling dates. Correlations between soluble C and soluble P were significant at two of the five sampling dates (r = 0.58 and 0.62) in amended soils and one of five sampling dates (r = 0.80) in unamended soils. Although the correlations between RLD and soluble C were not significant at every sampling date, the August 2003 data do suggest a possible effect of roots on soluble C. In addition, significant correlations between soluble C and soluble P at several sampling dates suggest a relationship between these parameters. Therefore cropping systems that include crops with higher amounts of root growth may promote increased soluble soil C levels and enhance P bioavailability.
Keywords:manure  root length  soluble C  soluble P
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号