首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks
Authors:Huynh Hieu Trung  Won Yonggwan  Kim Jung-Ja
Institution:Department of Computer Engineering, Chonnam National University, Gwangju, Korea. hthieu@hcmut.edu.vn
Abstract:Recently, a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden-layer feedforward neural networks (SLFNs). It was much faster than the traditional gradient-descent-based learning algorithms due to the analytical determination of output weights with the random choice of input weights and hidden layer biases. However, this algorithm often requires a large number of hidden units and thus slowly responds to new observations. Evolutionary extreme learning machine (E-ELM) was proposed to overcome this problem; it used the differential evolution algorithm to select the input weights and hidden layer biases. However, this algorithm required much time for searching optimal parameters with iterative processes and was not suitable for data sets with a large number of input features. In this paper, a new approach for training SLFNs is proposed, in which the input weights and biases of hidden units are determined based on a fast regularized least-squares scheme. Experimental results for many real applications with both small and large number of input features show that our proposed approach can achieve good generalization performance with much more compact networks and extremely high speed for both learning and testing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号