首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The kinetics of chain exchange in two-chain coiled coils: alpha alpha- and beta beta-tropomyosin.
Authors:S Ozeki  T Kato  M E Holtzer  A Holtzer
Institution:Department of Chemistry, Washington University, St. Louis, Missouri 63130.
Abstract:Measurements are presented on the time course of chain exchange among two-chain alpha-helical coiled coils of rabbit tropomyosin. All experiments are in a regime (temperature, protein concentration) in which coiled-coil dimers are the predominant species. Self-exchange in alpha alpha-tropomyosin was investigated by mixing alpha alpha species with alpha* alpha*, the asterisk designating an alpha-chain whose lone sulfhydryl (C190) has been blocked by carboxyamidomethylation. The overall process alpha alpha + alpha* alpha* in equilibrium with 2 alpha alpha* is followed by measurement of the fraction (h) of alpha alpha* species as a function of time. Similarly, self-exchange in beta beta-tropomyosin is examined by measurements of the overall process: beta beta + beta* beta* in equilibrium with 2 beta beta*, in which beta* signifies a beta-chain blocked at both sulfhydryls (C36 and C190). The observed time course for both chains is well fit by the first-order equation: h (t) = h (infinity) (1-e-k1t), with h (infinity) congruent to 0.5. This long-time limit is as expected for self-exchange, and agrees with experiments that attain equilibrium after slow cooling of thermally dissociated and unfolded chains. The simplest consonant mechanism is chain exchange by rate-limiting dissociation of dimers followed by random reassociation. Kinetic analysis shows k1 to be the rate constant for the chain dissociation step, a quantity not previously measured for any coiled coil. This rate constant for beta beta species is about an order of magnitude greater than for alpha alpha. In both, the activation enthalpy and entropy are very large, suggesting that activation to an extensively (greater than 50%) unfolded species necessarily precedes dissociation. Experiments are also reported for overall processes: alpha alpha + beta* beta* in equilibrium with 2 alpha beta* and alpha* alpha* + beta beta in equilibrium with 2 alpha* beta. Results are independent of which chain is blocked. Again h (infinity) congruent to 0.5, in agreement with equilibrium experiments, and the time course is first order. The rate constants and activation parameters are intermediate between those for self-exchange.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号