首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression
Authors:Christopher D Rock  Ralph S Quatrano
Institution:(1) Department of Biology, University of North Carolina, 27599-3280 Chapel Hill, NC, USA;(2) Present address: Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Abstract:Previous work has shown that in rice suspension cells, NaCl at 0.4 M can induce Em gene expression and act synergistically with ABA, possibly by potentiating the ABA response pathway through a rate-limiting intermediate (R.M. Bostock and R.S. Quatrano (1992) Plant Physiol., 98, 1356–1363). Since calcium is an intermediate in ABA regulation of stomatal closure, we tested the effect of calcium changes on ABA-inducible Em gene expression in transiently transformed rice protoplasts. We show that calcium is required for ABA-inducible Em-GUS expression and can act in synergy with ABA. The trivalent ions lanthanum, gadolinium, and aluminum, which are known to interact with calcium- and other signaling pathways, can act at sub-millimolar concentrations to increase GUS reporter gene expression driven by several promoters in transiently transformed rice protoplasts. This effect is not specific for the ABA-inducible Em promoter, but is synergistic with ABA. The lanthanum synergy with ABA does not require calcium. In rice suspension cells, lanthanum alone does not induce Em gene expression, in contrast to transiently transformed protoplasts, yet can act synergistically with ABA to effectively increase the sensitivity to ABA greater than tenfold. Trivalent ions may be a useful tool to study the regulation of gene expression. The possible effects of trivalent ions on ABA signal transduction and gene expression are discussed.
Keywords:Abscisic acid  calcium channel blockers  rice protoplasts (Oryza sativa L  )  signal transduction  transient gene expression
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号