首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Atrial myocardium is the predominant inotropic target of adrenomedullin in the human heart
Authors:Bisping Egbert  Tenderich Gero  Barckhausen Paul  Stumme Burkhard  Bruns Sebastian  von Lewinski Dirk  Pieske Burkert
Institution:Department of Cardiology, University of G?ttingen, G?ttingen, Germany.
Abstract:Adrenomedullin (ADM) is an endogenous peptide with favorable hemodynamic effects in vivo. In this study, we characterized the direct functional effects of ADM in isolated preparations from human atria and ventricles. In electrically stimulated human nonfailing right atrial trabeculae, ADM (0.0001-1 micromol/l) increased force of contraction in a concentration-dependent manner, with a maximal increase by 35 +/- 8% (at 1 micromol/l; P < 0.05). The positive inotropic effect was accompanied by a disproportionate increase in calcium transients assessed by aequorin light emission by 76 +/- 20%; force/light ratio (DeltaF/DeltaL) 0.58 +/- 0.15]. In contrast, elevation of extracellular calcium (from 2.5 to 3.2 mmol/l) proportionally increased force and aequorin light emission (DeltaF/DeltaL 1.0 +/- 0.1; P < 0.05 vs. ADM). Consistent with a cAMP-dependent mechanism, ADM (1 micromol/l) increased atrial cAMP levels by 90 +/- 12%, and its inotropic effects could be blocked by the protein kinase A (PKA) inhibitor H-89. ADM also exerted positive inotropic effects in failing atrial myocardium and in nonfailing and failing ventricular myocardium. The inotropic response was significantly weaker in ventricular vs. atrial myocardium and in failing vs. nonfailing myocardium. In conclusion, ADM exerts Ca(2+)-dependent positive inotropic effects in human atrial and less-pronounced effects in ventricular myocardium. The inotropic effects are related to increased cAMP levels and stimulation of PKA. In heart failure, the responsiveness to ADM is reduced in atria and ventricles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号