首页 | 本学科首页   官方微博 | 高级检索  
     


Changing frequency of pulsatile luteinizing hormone and progesterone secretion during the luteal phase of the menstrual cycle of rhesus monkeys
Authors:W E Ellinwood  R L Norman  H G Spies
Abstract:Experiments were conducted to examine the pulsatile nature of biologically active luteinizing hormone (LH) and progesterone secretion during the luteal phase of the menstrual cycle in rhesus monkeys. As the luteal phase progressed, the pulse frequency of LH release decreased dramatically from a high of one pulse every 90 min during the early luteal phase to a low of one pulse every 7-8 h during the late luteal phase. As the pulse frequency decreased, there was a corresponding increase in pulse amplitude. During the early luteal phase, progesterone secretion was not episodic and there were increments in LH that were not associated with elevations in progesterone. However, during the mid-late luteal phase, progesterone was secreted in a pulsatile fashion. During the midluteal phase (Days 6-7 post-LH surge), 67% of the LH pulses were associated with progesterone pulses, and by the late luteal phase (Days 10-11 post-LH surge), every LH pulse was accompanied by a dramatic and sustained release of progesterone. During the late luteal phase, when the LH profile was characterized by low-frequency, high-amplitude pulses, progesterone levels often rose from less than 1 ng/ml to greater than 9 ng/ml and returned to baseline within a 3-h period. Thus, a single daily progesterone determination is unlikely to be an accurate indicator of luteal function. These results suggest that the changing pattern of mean LH concentrations during the luteal phase occurs as a result of changes in frequency and amplitude of LH release. These changes in the pulsatile pattern of LH secretion appear to have profound effects on secretion of progesterone by the corpus luteum, especially during the mid-late luteal phase when the patterns of LH concentrations are correlated with those of progesterone.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号