首页 | 本学科首页   官方微博 | 高级检索  
     


Uracil-induced signaling pathways for DUOX-dependent gut immunity
Abstract:ABSTRACT

Intestinal dual oxidase (DUOX) activation is the first line of host defense against enteric infection in Drosophila. DUOX enzymatic activity is mainly controlled by phospholipase C-β (PLCβ)-dependent calcium mobilization, whereas DUOX gene expression is mainly controlled by the MEKK1-p38 mitogen-activated protein kinase pathway. Furthermore, bacterial-derived uracil molecules act as ligands for DUOX activation. However, our current understanding of uracil-induced signal transduction pathways remain incomplete. We have recently found that uracil stimulates Hedgehog signaling, which in turn upregulates cadherin99C (Cad99C) expression in enterocytes. Cad99C molecules, along with PLCβ and protein kinase C, induce the formation of signaling endosomes that facilitate intracellular calcium mobilization for DUOX activity. These observations illustrate the complexity of signaling cascades in uracil-induced signaling pathways. Here, we further demonstrated the role of lipid raft formation and calmodulin-dependent protein kinase-II on endosome formation and calcium mobilization, respectively. Moreover, we will provide a brief discussion on two different models for uracil recognition and uracil-induced DUOX activation in Drosophila enterocytes.
Keywords:Calmodulin-dependent kinase II  Drosophila  dual oxidase  gut immunity  hedgehog signaling  lipid raft  reactive oxygen species  Uracil
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号