首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo simulations of tBid association with the mitochondrial outer membrane
Authors:Valery G. Veresov  Alexander I. Davidovskii
Affiliation:(1) Department of Cell Biophysics, Institute of Biophysics and Cell Engineering, Academicheskaya St. 27, Minsk, 220072, Belarus
Abstract:Bid, a BH3-only pro-apoptopic member of the BCL-2 protein family, regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 α-helices (H1–H8, respectively) and is soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid by caspase 8 in apoptosis yields activated “tBid” (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. The release of cytochrome c from mitochondria to the cytosol constitutes a critical control point in apoptosis that is regulated by interaction of tBid protein with mitochondrial membrane. tBid displays structural homology to channel-forming bacterial toxins, such as colicins or transmembrane domain of diphtheria toxin. By analogy, it has been hypothesized that tBid would unfold and insert into the lipid bilayer of the mitochondria outer membrane (MOM) upon membrane association. However, it has been shown recently that unlike colicins and the transmembrane domain of diphtheria toxin, tBid binds to the lipid bilayer maintaining α-helical conformation of its helices without adopting a transmembrane orientation by them. Here, the mechanism of the association of tBid with the model membrane mimicking the mitochondrial membrane is studied by Monte Carlo simulations, taking into account the underlying energetics. A novel two-stage hierarchical simulation protocol combining coarse-grained discretization of conformational space with subsequent refinements was applied which was able to generate the protein conformation and its location in the membrane using modest computational resources. The simulations show that starting from NMR-established conformation in the solution, the protein associates with the membrane without adopting the transmembrane orientation. The configuration (conformation and location) of tBid providing the lowest free energy for the system protein/membrane/solvent has been obtained. The simulations reveal that tBid upon association with the membrane undergoes significant conformational changes primarily due to rotations within the loops between helices H4 and H5, H6 and H7, H7 and H8. It is established that in the membrane-bound state of tBid-monomer helices H3 and H5 have the locations exposed to the solution, helices H6 and H8 are partly buried and helices H4 and H7 are buried into the membrane at shallow depth. The average orientation of tBid bound to the membrane in the most stable configuration reported here is in satisfactory agreement with the evaluations obtained by indirect experimental means. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Apoptosis  Bid  Mitochondria  Protein insertion  Cardiolipin
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号