首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three maize (Zea mays L.) hybrids
Authors:Earl  Hugh J  Tollenaar  Matthijs
Institution:(1) Department of Crop and Soil Sciences, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602, USA;(2) Department of Crop Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Abstract:The introduction of a more efficient means of measuring leaf photosynthetic rates under field conditions may help to clarify the relationship between single leaf photosynthesis and crop growth rates of commercial maize hybrids. A large body of evidence suggests that gross photosynthesis (AG) of maize leaves can be accurately estimated from measurements of thylakoid electron transport rates (ETR) using chlorophyll fluorescence techniques. However, before this technique can be adopted, it will first be necessary to determine how the relationship between chlorophyll fluorescence and CO2 assimilation is affected by the non-steady state PPFD conditions which predominate in the field. Also, it must be determined if the relationship is stable across different maize genotypes, and across phenological stages. In the present work, the relationship between ETR and AG was examined in leaves of three maize hybrids by making simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, both under controlled environment conditions and in the field. Under steady-state conditions, a linear relationship between ETR and AG was observed, although a slight deviation from linearity was apparent at low AG. This deviation may arise from an error in the assumption that respiration in illuminated leaves is equivalent to respiration in darkened leaves. The relationship between chlorophyll fluorescence and photosynthetic CO2 assimilation was not stable during fluctuations in incident PPFD. Since even minor (e.g. 20%) fluctuations in incident PPFD can produce sustained ( > 20 s) departures from the mean relationship between ETR and AG, chlorophyll fluorometry can only provide an accurate estimate of actual CO2 assimilation rates under relatively stable PPFD conditions. In the field, the mean value of ETR / AG during the early part of the season (4.70 ± 0.07) was very similar to that observed in indoor-grown plants in the vegetative stage (4.60 ± 0.09); however, ETR / AG increased significantly over the growing season, reaching 5.00 ± 0.09 by the late grain-filling stage. Differences in ETR / AG among the three genotypes examined were small (less than 1% of the mean) and not statistically significant, suggesting that chlorophyll fluorometry can be used as the basis of a fair comparison of leaf photosynthetic rates among different maize cultivars.
Keywords:chlorophyll fluorescence  leaf gas exchange  Photosystem II
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号