首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A computational study of Shewanella oneidensis MR-1: structural prediction and functional inference of hypothetical proteins
Authors:Yost Christal  Hauser Loren  Larimer Frank  Thompson Dorothea  Beliaev Alexander  Zhou Jizhong  Xu Ying  Xu Dong
Institution:The Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6480, USA.
Abstract:The genomes of many organisms have been sequenced in the last 5 years. Typically about 30% of predicted genes from a newly sequenced genome cannot be given functional assignments using sequence comparison methods. In these situations three-dimensional structural predictions combined with a suite of computational tools can suggest possible functions for these hypothetical proteins. Suggesting functions may allow better interpretation of experimental data (e.g., microarray data and mass spectroscopy data) and help experimentalists design new experiments. In this paper, we focus on three hypothetical proteins of Shewanella oneidensis MR-1 that are potentially related to iron transport/metabolism based on microarray experiments. The threading program PROSPECT was used for protein structural predictions and functional annotation, in conjunction with literature search and other computational tools. Computational tools were used to perform transmembrane domain predictions, coiled coil predictions, signal peptide predictions, sub-cellular localization predictions, motif prediction, and operon structure evaluations. Combined computational results from all tools were used to predict roles for the hypothetical proteins. This method, which uses a suite of computational tools that are freely available to academic users, can be used to annotate hypothetical proteins in general.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号