首页 | 本学科首页   官方微博 | 高级检索  
     


Mid-successional stand dynamics in a cool-temperate conifer-hardwood forest in northern Japan
Authors:Koichi Takahashi
Affiliation:(1) Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan;(2) Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan
Abstract:Stand dynamics was studied over 13 years in a cool-temperate conifer-hardwood forest, northern Japan. A total 30 hardwood species and one conifer, Abies sachalinensis, larger than 1.5 cm DBH were recorded. The total stand density was 1677 trees ha−1 at the beginning, decreasing to 1184 trees ha−1 (30% reduction) over the study period, but the total stand basal area was almost unchanged (about 49 m2 ha−1). This large reduction in total density was mainly due to the death of saplings and infrequent recruitment. Number of recruits gradually decreased with time, while that of dead trees was constant. Cause of death of small trees was mainly due to suppression by tall trees. Skewness of the DBH frequency distribution varied among the species. A less skewed frequency distribution (i.e., few number of saplings) was shown by shade-intolerant species such as Populus maximowiczii and Betula maximowicziana, and a more skewed frequency distribution (i.e., large number of saplings) by shade-tolerant species such as Acer mono and Tilia japonica. DBH frequency distribution changed to less skewed patterns with reduction of density in most species during the census period. Rank of shade tolerance positively correlated with tree density and skewness, and negatively correlated with mean DBH. Skewness also positively correlated with recruitment rates. Furthermore, rank of shade tolerance positively correlated with seed size. These results suggest that shade-intolerant species regenerated immediately after disturbances by wide dispersal of small seeds, but their recruitment was interrupted after that. By contrast, shade-tolerant species were able to recruit even after the ceasation of recruitment of shade-intolerant species, but suffered severe mortality due to the increasing shading with the progress of stand development. This study suggests that the stand is still developing, with changes in species composition and size structure, and that species differences in shade tolerance and seed size are important for the stand structural changes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号