ENVIRONMENTAL CONTROL OF SEED GERMINATION IN THLASPI ARVENSE (CRUCIFERAE) |
| |
Authors: | Jan P. Hazebroek James D. Metzger |
| |
Affiliation: | U.S.D.A.-A.R.S. Biosciences Research Laboratory, State University Station, Fargo, North Dakota, 58105-5674 |
| |
Abstract: | The effect of environmental conditions during storage and imbibition on germination was investigated in field pennycress (Thlaspi arvense L.), a weed species that can behave as a winter or a summer annual. Freshly harvested seeds of an inbred line with a cold requirement for flowering exhibited primary dormancy that was rapidly lost following 1 month of afterripening in a dry state. Nondormant seeds were positively photoblastic. The light effect was mediated through phytochrome since germination was promoted by red light and inhibited by far red light. Seedling emergence was also inhibited by light filtered through a canopy of wheat leaves. Germination of field pennycress seeds was considerably more sensitive to moisture stress than two sympatric species, wild oat (Avena fatua L.) and wheat (Triticum aestivum L., cv. ERA). Seeds of the latter two species were chosen in order to compare the effect of water potential on germination in field pennycress with that in sympatric species. It was concluded that the major environmental factor limiting nondormant field pennycress seeds on the soil surface was water availability. Imbibition of fully afterripened seeds at low temperatures (6 C) induced a deep secondary dormancy. In contrast to primary dormancy, cold-induced dormancy was not alleviated by red light, alternating temperatures (21/5 C), or 2 months of dry storage at 6, 15, or 35 C. However, exogenous gibberellin A3 or 24 weeks of dry storage resulted in germination in cold-induced dormant seeds. Secondary dormancy was not observed in fully afterripened seeds that were preincubated at 21 C for 1 or 2 days prior to the cold treatment. These results may explain the failure in field experiments to observe the cold-induced secondary dormancy that limits spring emergence in other winter annuals (J. Baskin, C. Baskin, Weed Res. 1979 19: 285–292). |
| |
Keywords: | |
|
|