首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EFFECTS OF TISSUE VOLUME AND LOCATION ON THE MECHANICAL CONSEQUENCES OF DEHYDRATION OF PETIOLES
Authors:Karl J Niklas
Institution:Section of Plant Biology, Cornell University, Ithaca, New York, 14853
Abstract:Data are presented on the mechanical consequences of dehydration for the petioles of two monocots and two dicots differing in leaf morphology (pinnate leaves ofChamaedorea erumpens and simple leaves of Spathiphyllum ‘clevelandii‘; pinnate leaves of Acer negundo and simple leaves of A. saccharum). The flexural stiffness EI of petioles decreased over a broad range of tissue water potential (– 10 < ψw <– 50 bars). Within the same range of ψ, the second moment of area I and the elastic modulus E were observed to decrease and increase, respectively. However, the mechanical alterations of Chamaedorea and A. negundo petioles were significantly less than those observed for Spathiphyllum and A. saccharum petioles. The increase in E of Spathiphyllum and A. saccharum petioles attending dehydration was linearly correlated with an increase in the relative volume fraction of tissues with lignified, thick cell walls (“support tissues”). The decrease in I of Spathiphyllum and A. saccharum petioles was linearly correlated with a decrease in the relative volume fraction of tissues with nonlignified, thin cell walls (“ground tissues”). Similar trends were observed for the petioles of C. erumpens and A. negundo but were found not to be statistically significant. Anatomical differences in the relative volume fraction and spatial locations of support tissues in the petioles of these four taxa appear to account for the differences observed in the mechanical consequences of petiole dehydration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号