首页 | 本学科首页   官方微博 | 高级检索  
     


ACROPETAL LEAF DIFFERENTIATION IN QUERCUS RUBRA (FAGACEAE)
Authors:P. T. Tomlinson  R. E. Dickson  J. G. Isebrands
Affiliation:USDA Forest Service, North Central Forest Experiment Station, P. O. Box 898, Rhinelander, Wisconsin, 54501
Abstract:Northern red oak (Quercus rubra L.) leaves were shown to mature progressively from base to tip of the lamina based on studies of growth rates, anatomical differentiation, and 14C-transport. Lamina expansion in both length and width ceased in the basal quarter of the leaf before the apical quarter. Cell expansion and tissue differentiation were more advanced at the base than at the tip of leaves at 10%–20% of full expansion. Physiological data supported the morphological and anatomical data. Sink activity was examined by following the distribution of 14C imported into sink leaves with direct vascular connections to the source leaf to assure uniform assimilate supply to the sink leaves. Leaves approximately 50% of full expansion imported five to seven times more l4C-assimilates into the tip than into the base of the leaf, consistent with continued sink activity in the leaf tip after import by the leaf base has ceased. Transport of 14C from portions of the leaf, indicating source activity, occurred first in the basal portion of the lamina. The base functioned as a source at approximately 40% of full expansion; the tip, at approximately 60%. Thus, northern red oak displays an acropetal pattern of leaf expansion and differentiation, unlike the more typical pattern of basipetal leaf development defined in many other dicotyledonous genera with simple leaves.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号