首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination
Authors:Lisa A Donovan  James R Ehleringer
Institution:Department of Biology and Stable Isotope Ratio Facility for Environmental Research, University of Utah, Salt Lake City, Utah, 84112
Abstract:Water-use efficiency is thought to be related to plant performance and natural selection for plants in arid habitats, based on a general expectation that increased water-use efficiency is associated with decreased carbon gain and biomass accumulation. Using leaf carbon isotope discrimination Δ to determine integrated water-use efficiency, we estimated genetic variance for, and examined the relationships among Δ, biomass, and gas exchange characters for full-sibling families of the woody shrub, Chrysothamnus nauseosus, grown from seed collected at Tintic, Utah. In both well-watered greenhouse and common garden experiments, and water-limited common garden experiments, there were significant family differences for Δ, biomass, and morphological characters, indicating a potential for genetic change in response to selection. However, estimates of broad-sense heritabilities for Δ were low, indicating that the rate of change in response to selection would be relatively slow. This was consistent with the large amount of phenotypic plasticity observed for Δ as it differed with water treatment and year in the garden experiment. Phenotypically, aboveground biomass and Δ were negatively correlated within the well-watered treatments (i.e., more water-use efficient plants were larger), not correlated within the water-limited treatment, and positively correlated for combined well-watered and water-limited garden treatments, suggesting that variation in both photosynthetic capacity and stomatal limitation contribute to the variation in Δ. In contrast to the phenotypic correlations, genetic correlations for biomass and Δ were consistently negative within each treatment, and selection for higher water-use efficiency through low Δ for C. nauseosus plants in this population would tend to shift populations toward larger plants. For C. nauseosus, increased water-use efficiency is not necessarily associated with decreased carbon gain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号