首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction between dopamine and its transporter: role of intracellular sodium ions and membrane potential
Authors:Chen Nianhang  Reith Maarten E A
Affiliation:Department of Psychiatry, New York University School of Medicine, New York, New York, USA. nianhang@med.nyu.edu
Abstract:The present study addresses the effect of intracellular Na(+) and membrane potential on the binding of dopamine (DA) to the dopamine transporter (DAT). Perforation of plasma membranes of DAT-expressing cells with gramicidin diminished DA uptake and decreased the potency (increases K(i)) of DA in inhibiting the binding of cocaine analog [(3)H]2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (CFT). It also compromised the ability of external Na(+) to reduce DA K(i). No substantial effect on DA K(i) was observed upon gramicidin treatment in Na(+)-free buffer, membrane depolarization with high [K(+)](o), or elevation of [Na(+)](i) with monensin under non-depolarizing conditions. Elevation of DA K(i) was greater at more positive potentials when [Na(+)](i) was raised to a similar level, or at higher [Na(+)](i) when the membrane was depolarized to a similar level. In cells expressing D313N DAT, DA K(i) was significantly higher but less sensitive to gramicidin than that in wild-type (WT) cells. In contrast, DA K(i) in cell-free membranes was insensitive to Na(+), gramicidin, and D313N mutation. The data suggest that (i) intracellular Na(+) plays a role in affecting the external access to DA binding sites at DAT on depolarized plasma membranes of cells, and (ii) access to DA binding sites in cell-free membranes may occur from the intracellular side of the membrane. Unlike DA binding, CFT binding to both cells and membranes was sensitive to Na(+) and D313N mutation but insensitive to gramicidin, consistent with exclusively external access to sites that are different from but conformationally linked to those for DA.
Keywords:binding    cocaine analog    depolarization    dopamine    dopamine transporter    sodium ion
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号