首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane
Authors:Maier Katja S  Hubich Stefanie  Liebhart Helga  Krauss Susanne  Kuhn Andreas  Facey Sandra J
Institution:Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany.
Abstract:The sensor protein KdpD of Escherichia coli is composed of a large N-terminal hydrophilic region (aa 1–400), four transmembrane regions (aa 401–498) and a large hydrophilic region (aa 499–894) at the C-terminus. KdpD requires the signal recognition particle (SRP) for its targeting to the membrane. Deletions within KdpD show that the first 50 residues are required for SRP-driven membrane insertion. A fusion protein of the green fluorescent protein (GFP) with KdpD is found localized at the membrane only when SRP is present. The membrane targeting of GFP was not observed when the first 50 KdpD residues were deleted. A truncated mutant of KdpD containing only the first 25 amino acids fused to GFP lost its ability to specifically interact with SRP, whereas a specific interaction between SRP and the first 48 amino acids of KdpD fused to GFP was confirmed by pull-down experiments. Conclusively, a small amphiphilic region of 27 residues within the amino-terminal domain of KdpD (aa 22–48) is recognized by SRP and targets the protein to the membrane. This shows that membrane proteins with a large N-terminal region in the cytoplasm can be membrane-targeted early on to allow co-translational membrane insertion of their distant transmembrane regions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号