首页 | 本学科首页   官方微博 | 高级检索  
     


Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis
Authors:Hiroyuki Ogawa  Kosuke Kaji  Norihisa Nishimura  Hirotetsu Takagi  Koji Ishida  Hiroaki Takaya  Hideto Kawaratani  Kei Moriya  Tadashi Namisaki  Takemi Akahane  Hitoshi Yoshiji
Affiliation:1. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Data curation (lead), Formal analysis (lead), ​Investigation (lead), Methodology (supporting), Writing - original draft (lead);2. Department of Gastroenterology, Nara Medical University, Nara, Japan;3. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Formal analysis (equal), ​Investigation (supporting), Writing - review & editing (supporting);4. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: ​Investigation (supporting), Writing - review & editing (supporting);5. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Software (lead), Writing - review & editing (supporting);6. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Formal analysis (supporting), Visualization (equal), Writing - review & editing (supporting);7. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Validation (lead), Writing - review & editing (supporting);8. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Methodology (lead), Writing - review & editing (supporting);9. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Supervision (equal), Writing - review & editing (supporting);10. Department of Gastroenterology, Nara Medical University, Nara, Japan

Contribution: Conceptualization (equal), Resources (lead), Supervision (lead), Writing - review & editing (equal)

Abstract:Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.
Keywords:angiogenesis  hepatic stellate cell  lenvatinib  liver fibrosis  PDGF  VEGF
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号