首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review
Authors:de Mel Achala  Jell Gavin  Stevens Molly M  Seifalian Alexander M
Institution:Centre of Nanotechnology, Biomaterials and Tissue Engineering, UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom.
Abstract:The higher patency rates of cardiovascular implants, including vascular bypass grafts, stents, and heart valves are related to their ability to inhibit thrombosis, intimal hyperplasia, and calcification. In native tissue, the endothelium plays a major role in inhibiting these processes. Various bioengineering research strategies thereby aspire to induce endothelialization of graft surfaces either prior to implantation or by accelerating in situ graft endothelialization. This article reviews potential bioresponsive molecular components that can be incorporated into (and/or released from) biomaterial surfaces to obtain accelerated in situ endothelialization of vascular grafts. These molecules could promote in situ endothelialization by the mobilization of endothelial progenitor cells (EPC) from the bone marrow, encouraging cell-specific adhesion (endothelial cells (EC) and/or EPC) to the graft and, once attached, by controlling the proliferation and differentiation of these cells. EC and EPC interactions with the extracellular matrix continue to be a principal source of inspiration for material biofunctionalization, and therefore, the latest developments in understanding these interactions will be discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号