首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signal amplification between Gbetagamma release and PI3Kgamma-mediated PI(3,4,5)P3 formation monitored by a fluorescent Gbetagamma biosensor protein and repetitive two component total internal reflection/fluorescence redistribution after photobleaching analysis
Authors:Tannert Astrid  Voigt Philipp  Burgold Steffen  Tannert Sebastian  Schaefer Michael
Institution:Department of Molecular Pharmacology and Cell Biology, Neurowissenschaftliches Forschungszentrum, Charité-Universit?tsmedizin Berlin, Berlin, Germany.
Abstract:Phosphoinositide 3-kinase gamma (PI3Kgamma) is activated by Gbetagamma release after stimulation of Galpha i -coupled receptors, involving a recruitment of the enzyme to the plasma membrane via interaction of the regulatory subunit p101 or p87 with Gbetagamma. The receptor-mediated release of Gbetagamma was, however, insufficient to elicit a translocation of p101 observable by classical fluorescence microscopy approaches. Since the mobilities of plasma membrane-associated and cytosolic proteins differ strongly, small changes in the amount of plasma membrane association should be detectable by an altered diffusional behavior. Here, changes in mobility were monitored by fluorescence redistribution after photobleaching (FRAP) which was repetitively applied before and after stimulation of cells. To combine the advantages of total internal reflection (TIR) illumination, which preferentially excites fluorophors located at or near the plasma membrane, with that provided by the mobility information, we developed a combined TIR/FRAP setup which enabled us to point bleach parts of an image that was observed under TIR illumination. For FRAP data analysis, we introduce a convolution-based method and a global two component model. Using this TIR/FRAP approach, an increased plasma membrane association of the fluorescent Gbetagamma-binding domain of p101 after Gbetagamma release by G protein-coupled receptor stimulation could be detected and quantified. By comparing the translocation efficiency of this domain with that of YFP-GRP1(PH), a biosensor for the PI3Kgamma product PI(3,4,5)P3, we evaluate the signal amplification between Gbetagamma release and PI(3,4,5)P3 formation after activation of Galpha i -coupled receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号