首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene
Authors:Michal Ziv-El  Anca G Delgado  Ying Yao  Dae-Wook Kang  Katherine G Nelson  Rolf U Halden  Rosa Krajmalnik-Brown
Institution:(1) Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, PO Box 875001, Tempe, AZ 85287-5001, USA;
Abstract:A novel anaerobic consortium, named DehaloR^2, that performs rapid and complete reductive dechlorination of trichloroethene (TCE) to ethene is described. DehaloR^2 was developed from estuarine sediment from the Back River of the Chesapeake Bay and has been stably maintained in the laboratory for over 2 years. Initial sediment microcosms showed incomplete reduction of TCE to DCE with a ratio of trans- to cis- isomers of 1.67. However, complete reduction to ethene was achieved within 10 days after transfer of the consortium to sediment-free media and was accompanied by a shift to cis-DCE as the prevailing intermediate metabolite. The microbial community shifted from dominance of the Proteobacterial phylum in the sediment to Firmicutes and Chloroflexi in DehaloR^2, containing the genera Acetobacterium, Clostridium, and the dechlorinators Dehalococcoides. Also present were Spirochaetes, possible acetogens, and Geobacter which encompass previously described dechlorinators. Rates of TCE to ethene reductive dechlorination reached 2.83 mM Cl d−1 in batch bottles with a Dehalococcoides sp. density of 1.54E+11 gene copies per liter, comparing favorably to other enrichment cultures described in the literature and identifying DehaloR^2 as a promising consortium for use in bioremediation of chlorinated ethene-impacted environments.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号