首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrostatic potential and Born energy of charged molecules interacting with phospholipid membranes: calculation via 3-D numerical solution of the full Poisson equation.
Authors:J E Schnitzer  K C Lambrakis
Institution:University of California, San Diego, School of Medicine, Division of Cellular and Molecular Medicine, La Jolla 92093-0651.
Abstract:Understanding the physicochemical basis of the interaction of molecules with lipid bilayers is fundamental to membrane biology. In this study, a new, three-dimensional numerical solution of the full Poisson equation including local dielectric variation is developed using finite difference techniques in order to model electrostatic interactions of charged molecules with a non-uniform dielectric. This solution is used to describe the electric field and electrostatic potential profile of a charged molecule interacting with a phospholipid bilayer in a manner consistent with the known composition and structure of the membrane. Furthermore, the Born interaction energy is then calculated by appropriate integration of the electric field over whole space. Numerical computations indicate that the electrostatic potential profile surrounding a charge molecule and its resultant Born interaction energy are a function of molecular position within the membrane and change most significantly within the polar region of the bilayer. The maximum interaction energy is observed when the charge is placed at the center of the hydrophobic core of the membrane and is strongly dependent on the size of the charge and on the thickness of the hydrocarbon core of the bilayer. The numerical results of this continuum model are compared with various analytical approximations for the Born energy including models established for discontinuous slab dielectrics. The calculated energies agree with the well-known Born analytical expression only when the charge is located near the center of a hydrocarbon core of greater than 60 A in thickness. The Born-image model shows excellent agreement with the numerical results only when modified to include an appropriate effective thickness of the low dielectric region. In addition, a newly derived approximation which considers the local mean dielectric provides a simple and continuous solution that also agrees well with the numerical results.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号