首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins
Authors:West Christopher M  van der Wel Hanke  Gaucher Eric A
Institution:Department of Anatomy and Cell Biology, 1600 SW Archer Road, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA.
Abstract:Recently, complex O-glycosylation of the cytoplasmic/nuclear protein Skp1 has been characterized in the eukaryotic microorganism Dictyostelium. Skp1's glycosylation is mediated by the sequential action of a prolyl hydroxylase and five conventional sugar nucleotide-dependent glycosyltransferase activities that reside in the cytoplasm rather than the secretory compartment. The Skp1-HyPro GlcNAcTransferase, which adds the first sugar, appears to be related to a lineage of enzymes that originated in the prokaryotic cytoplasm and initiates mucin-type O-linked glycosylation in the lumen of the eukaryotic Golgi apparatus. GlcNAc is extended by a bifunctional glycosyltransferase that mediates the ordered addition of beta1,3-linked Gal and alpha1,2-linked Fuc. The architecture of this enzyme resembles that of certain two-domain prokaryotic glycosyltransferases. The catalytic domains are related to those of a large family of prokaryotic and eukaryotic, cytoplasmic, membrane-bound, inverting glycosyltransferases that modify glycolipids and polysaccharides prior to their translocation across membranes toward the secretory pathway or the cell exterior. The existence of these enzymes in the eukaryotic cytoplasm away from membranes and their ability to modify protein acceptors expose a new set of cytoplasmic and nuclear proteins to potential prolyl hydroxylation and complex O-linked glycosylation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号