首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human placental N-acetyl-beta-D-hexosaminidase isozymes. Activity toward native hyaluronic acid.
Authors:G Bach  B Geiger
Institution:1. Department of Human Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel;2. Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel
Abstract:The activity of purified human hexosaminidases A and B toward hyaluronic acid (HA) isolated from cultured human skin fibroblasts was investigated. The cleavage of N-acetylglucosaminyl residues to monosaccharide N-acetylglucosamines by hexosaminidase isozymes was determined in the presence and absence of purified human β-glucuronidase. The pH optima of this reaction, with and without β-glucuronidase, were 4.5 for hexosaminidase A and 4.0 for hexosaminidase B. The hydrolysis of HA by both hexosaminidase isozymes proceeds linearily for at least 18 h in the presence of β-glucuronidase. Concentrations of 0.5–5 units of either isozyme showed a linear relationship with rate of hydrolysis. Without β-glucuronidase, hexosaminidase only cleaved the terminal N-acetylglucosamine residue. However, under optimal conditions, with β-glucuronidase, the hydrolytic activity of hexosaminidase B was about 30% as efficient as that of hexosaminidase A. Approximately 70% of the HA could be degraded by 5 units of hexosaminidase A in the presence of 0.5 unit of β-glucuronidase, as opposed to 25% degraded by hexosaminidase B. These results probably reflect intrinsic differences in the activities of the two isozymes. Since the substrate (HA) did not inhibit the hydrolysis of a synthetic substrate (4-methylumbelliferyl-β-glucosaminide) by hexosaminidase B, the linear kinetics of HA hydrolysis implies no product inhibition. These data indicate that native HA can be hydrolyzed by the combined activities of β-glucuronidase with hexosaminidase A or hexoaminidase B.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号