首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Observing the osmophobic effect in action at the single molecule level
Authors:Aioanei Daniel  Tessari Isabella  Bubacco Luigi  Samorì Bruno  Brucale Marco
Institution:Department of Biochemistry G.Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
Abstract:Protecting osmolytes are widespread small organic molecules able to stabilize the folded state of most proteins against various denaturing stresses in vivo. The osmophobic model explains thermodynamically their action through a preferential exclusion of the osmolyte molecules from the protein surface, thus favoring the formation of intrapeptide hydrogen bonds. Few works addressed the influence of protecting osmolytes on the protein unfolding transition state and kinetics. Among those, previous single molecule force spectroscopy experiments evidenced a complexation of the protecting osmolyte molecules at the unfolding transition state of the protein, in apparent contradiction with the osmophobic nature of the protein backbone. We present single-molecule evidence that glycerol, which is a ubiquitous protecting osmolyte, stabilizes a globular protein against mechanical unfolding without binding into its unfolding transition state structure. We show experimentally that glycerol does not change the position of the unfolding transition state as projected onto the mechanical reaction coordinate. Moreover, we compute theoretically the projection of the unfolding transition state onto two other common reaction coordinates, that is, the number of native peptide bonds and the weighted number of native contacts. To that end, we augment an analytic Ising-like protein model with support for group-transfer free energies. Using this model, we find again that the position of the unfolding transition state does not change in the presence of glycerol, giving further support to the conclusions based on the single-molecule experiments.
Keywords:protein folding  single molecule  force spectroscopy  osmolytes  unfolding transition state
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号