首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive <Emphasis Type="Italic">GH3</Emphasis> genes during development and response to different stimuli in tomato (<Emphasis Type="Italic">Solanum lycopersicum</Emphasis>)
Authors:Rahul Kumar  Priyanka Agarwal  Akhilesh K Tyagi  Arun K Sharma
Institution:(1) Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India;(2) National Institute of Plant Genome Research, New Delhi, 110067, India;
Abstract:In plants, auxin-mediated responses are regulated by diverse proteins. One such class of proteins, i.e. GH3, is involved in the conjugation of IAA to amino acids and provides a negative feedback loop to control auxin homoeostasis. In order to have a better understanding of the mechanism of the auxin action, 15 genes encoding GH3 members were identified using existing EST databases of tomato. Their orthologs were identified from tobacco, potato, N. benthemiana, pepper, and petunia. Phylogenetic analysis of AtGH3, SlGH3, and their Solanaceae orthologs provided insights into various orthologous relationships among these proteins. These genes were found to be responsive to a variety of signals including, phytohormones and environmental stresses. Analysis of AuxRE elements in their promoters showed variability in the sequence as well as number of this element. Up-regulation of only 11 SlGH3 genes, in response to exogenous auxin, suggested possible relationship between the diversity in the sequence and number of AuxRE element with the auxin inducibility. Expression analysis of SlGH3 genes in different vegetative and reproductive tissues/stages suggested limited or no role for most of the SlGH3 genes at the initiation of fruit ripening. However, up-regulation of SlGH3-1 and -2 at the onset of fruit ripening indicates that these genes could have a role in fruit ripening. The present study characterizes GH3 gene family of tomato and its evolutionary relationship with members of this family from other Solanaceae species and Arabidopsis. It could help in the identification of GH3 genes and revelation of their function during vegetative/reproductive development stages from other Solanaceae members.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号