首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Natural and Artificial Light in Arctic Latitudes on Long- and Short-day Plants as Revealed by Growth Analysis
Authors:SCHWABE  W W
Institution:Research Institute of Plant Physiology, Imperial College of Science and Technology London
Abstract:The effects on growth and flowering of two short-day and twolong-day plants when grown under different conditions of illuminationare described. The plants fully investigated were Kalanchoeblossfeldiana and Xanthium pennsylvanicum and the annual varietiesof Hyoscyamus niger and Beta vulgaris. Wintex barley, Iberisumbellata, and tomato were also grown in some selected treatments.The conditions investigated comprised continuous full daylight(24 hours), full daylight for the whole of the daily photoperiodand full daylight for half the photoperiods, the other halfconsisting of either daylight reduced by shading or light fromincandescent lamps or fluorescent tubes (daylight-matching type),all of the same low intensity. Two lengths of photoperiod wereused for each species, one nearly optimal for flowering, theother closer to the critical day-length; and the order of thelow and high light treatments was varied. These factors werecombined factorially. Data were collected (or derived) for the following characteristics,though not always for all the species grown: dry weights, leafareas, heights, water contents, epidermal cell sizes, net assimilationrates, times to flowering, leaf-number increments until flowering,numbers of inflorescences, stomatal apertures, and leaf postures. Among other effects, the data revealed that in all four speciesinvestigated the adverse effects on over-all growth to be expectedfrom reduction of the daily photoperiod or of the intensityof illumination are in fact minimized. This compensation waseffected mainly by large increases in leaf areas, even thoughin all cases half the daily photoperiod consisted of full daylight.There are indications that increased efficiencies (net assimilationrates) may also have been involved. The leaf-area increasesappear to have been due to increased cell size rather than cellnumber and a close positive correlation with water content wasfound. The most striking among the effects on flowering was the failureof sugar-beet to bolt when half of its photoperiod (totals of20 and 14 hours) consisted of light from fluorescent lamps.The flowering of barley and Hyoscyamus was also delayed considerablyunder these conditions. The deficiency of red in the spectrumof the fluorescent light is believed to have been the cause.By contrast, the flowering of Iberis, a crucifer, was not affected.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号