首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of PKC in the novel synergistic action of urotensin II and angiotensin II and in urotensin II-induced vasoconstriction
Authors:Wang Yan-Xia  Ding Ying-Jiong  Zhu Yi-Zhun  Shi Ying  Yao Tai  Zhu Yi-Chun
Institution:Dept. of Physiology and Pathophysiology, Fudan Univ. Shanghai Medical College, 138 Yi Xue Yuan Road, Shanghai 200032, People's Republic of China.
Abstract:The intracellular signaling of human urotensin II (hU-II) and its interaction with other vasoconstrictors such as ANG II are poorly understood. In endothelium-denuded rat aorta, coadministration of hU-II (1 nM) and ANG II (2 nM) exerted a significant contractile effect that was associated with increased protein kinase C (PKC) activity and phosphorylation of PKC-alpha/betaII and myosin light chain, whereas either hU-II or ANG II administered alone at these concentrations had no statistically significant effect. This synergistic effect was abrogated by the PKC inhibitor chelerythrine (10 and 30 microM), the selective PKC-alpha/betaII inhibitor G?-6976 (0.1 and 1 microM), the hU-II receptor ligand urantide (30 nM and 1 microM), or the ANG II antagonist losartan (1 microM). Moreover, in endothelium-intact rat aorta, the synergistic effect of hU-II and ANG II was not exerted any longer, and this synergistic effect was unmasked by pretreatment of the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. hU-II (10 nM) alone caused a long-lasting increase in phospho-PKC-theta, phospho-myosin light chain, and PKC activity, which was associated with long-lasting vasoconstriction. These changes were prevented by chelerythrine. Methoxyverapamil-thapsigargin treatment reduced the hU-II-induced vasoconstriction by approximately 50%. The methoxyverapamil-thapsigargin-resistant component of hU-II-induced vasoconstriction was dose-dependently inhibited by chelerythrine. In conclusion, hU-II induces a novel PKC-dependent synergistic action with ANG II in inducing vasoconstriction. PKC-alpha/betaII is probably the PKC isoform involved in this synergistic action. Nitric oxide produced in the endothelium probably masks this synergistic action. The long-lasting vasoconstriction induced by hU-II alone is PKC dependent and associated with PKC-theta phosphorylation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号