首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improved postischemic function following acute exercise is not mediated by nitric oxide synthase in the rat heart
Authors:Taylor Ryan P  Olsen Marissa E  Starnes Joseph W
Institution:Dept. of Kinesiology and Health Education, 1 Univ. Station, D3700, Univ. of Texas, Austin, TX 78712-0360, USA.
Abstract:The mediators of acute exercise-induced preconditioning against ischemia-reperfusion injury are not understood. This study assesses the role of nitric oxide synthase (NOS), a reported mediator of other forms of preconditioning. Male Fischer 344 rats were divided into five groups (n = 6-7): sedentary (Sed); exercised 2 days on a treadmill at 20 m/min, 6 degrees grade, for 60 min (Run); sedentary, perfused with 100 microM N(omega)-nitro-l-arginine methyl ester hydrochloride (l-NAME) to inhibit NOS (Sed/L-N); exercised, perfused with l-NAME (Run/L-N); and exercised in a 4 degrees C environment, perfused with l-NAME (CRun/L-N). Twenty-four hours following exercise, isolated, perfused working hearts were subjected to 22.5 min of global ischemia plus 30 min of normoxic reperfusion. Left ventricle contents of several putative preconditioning mediators were determined. Postischemic recovery of cardiac output times systolic pressure was better in Run than Sed (78.4 vs. 50.2% of preischemia, P < 0.05). Inhibition of NOS did not abrogate the improved recovery in the exercise groups or alter recovery in Sed. All exercise groups also displayed improved myocardial efficiency (cardiac output times systolic pressure/oxygen consumption) postischemia and less lactate dehydrogenase release (P < 0.05). l-NAME appeared to lower lactate dehydrogenase release independent of exercise. The only change in antioxidant enzyme activity was a decrease in manganese superoxide dismutase in CRun/L-N (P < 0.05). Heat shock protein 72 expression increased only in Run and Run/L-N and endothelial NOS only in CRun/L-N (P < 0.05). Acute exercise-induced preconditioning of the Fischer 344 rat heart is not mediated by NOS and does not require increases in heat shock protein 72 or antioxidant enzymes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号