首页 | 本学科首页   官方微博 | 高级检索  
     


Control of mixed-substrate utilization in continuous cultures of Escherichia coli
Authors:Michael Bleyman   Masatoshi Kondo   Norman Hecht     Carl Woese
Abstract:The chemostat culture technique was used to study the control mechanisms which operate during utilization of mixtures of glucose and lactose and glucose and l-aspartic acid by populations of Escherichia coli B6. Constitutive mutants were rapidly selected during continuous culture on a mixture of glucose and lactose, and the beta-galactosidase level of the culture increased greatly. After mutant selection, the specific beta-galactosidase level of the culture was a decreasing function of growth rate. In cultures of both the inducible wild type and the constitutive mutant, glucose and lactose were simultaneously utilized at moderate growth rates, whereas only glucose was used in the inducible cultures at high growth rates. Catabolite repression was shown to be the primary mechanism of control of beta-galactosidase level and lactose utilization in continuous culture on mixed substrates. In batch culture, as in the chemostat, catabolite repression acting by itself on the lac enzymes was insufficient to prevent lactose utilization or cause diauxie. Interference with induction of the lac operon, as well as catabolite repression, was necessary to produce diauxic growth. Continuous cultures fed mixtures of glucose and l-aspartic acid utilized both substrates at moderate growth rates, even though the catabolic enzyme aspartase was linearly repressed with increasing growth rate. Although the repression of aspartase paralleled the catabolite repression of beta-galactosidase, l-aspartic acid could be utilized even at very low levels of the catabolic enzyme because of direct anabolic incorporation into protein.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号