Abstract: | LM cells in which the membrane phospholipids had been modified with choline analogues were infected with vesicular stomatitis virus. The choline analogues tested were choline, N,N'-dimethylethanolamine, N-monomethylethanolamine and ethanolamine. These modifications per se did not affect the syntheses of individual viral proteins. The viral glycoprotein was detected in the plasma membranes of all the modified cells by pronase digestion in pulse-chase experiments, but the amount of glycoprotein susceptible to proteolysis varied, decreasing in these modified cells in the following order: N,N'-dimethylethanolamine- greater than choline- greater than N-monomethylethanolamine- greater than ethanolamine-treated cells. After a 4-h chase, glycoprotein was mainly distributed in the plasma membranes of cells modified with N,N'-dimethylethanolamine, whereas it was found in both the microsomes and plasma membranes of cells modified with other analogues. Fairly large amounts of glycoprotein were also found in the soluble fraction of ethanolamine-treated cells, but not in that of choline- or N,N'-dimethylethanolamine-treated cells. More precise experiments on the behaviour of glycoprotein with a short period of chase strongly suggested that migration of glycoprotein from the microsomes to the plasma membranes was fastest in cells modified with N,N'-dimethylethanolamine and slowest in cells modified with ethanolamine. Membrane lipid modifications also resulted in release of different numbers of progeny virions from the cells, release of virions from the cells decreasing in the following order: N,N'-dimethylethanolamine- greater than choline- greather N-monomethylethanolamine- greater than ethanolamine-treated cells. These results indicate that modification of membrane phospholipids influences not only the insertion of glycoprotein into the microsomes and its migration to the plasma membranes, but also the production of progeny virions. |