首页 | 本学科首页   官方微博 | 高级检索  
     


Intracellular chloride and calcium transients evoked by gamma-aminobutyric acid and glycine in neurons of the rat inferior colliculus.
Authors:M J Frech  J W Deitmer  K H Backus
Affiliation:Abteilung für Allgemeine Zoologie, FB Biologie, Universit?t Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany.
Abstract:Microfluorometric recordings showed that the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated transient increases in the intracellular Cl- concentration in neurons of the inferior colliculus (IC) from acutely isolated slices of the rat auditory midbrain. Current recordings in gramicidin-perforated patch mode disclosed that GABA and glycine mainly evoked inward or biphasic currents. These currents were dependent on HCO3- and characterized by a continuous shift of their reversal potential (E(GABA/gly)) in the positive direction. In HCO3- -buffered saline, GABA and glycine could also evoke an increase in the intracellular Ca2+ concentration. Ca2+ transients occurred only with large depolarizations and were blocked by Cd2+, suggesting an activation of voltage-gated Ca2+ channels. However, in the absence of HCO3-, only a small rise, if any, in the intracellular Ca2+ concentration could be evoked by GABA or glycine. We suggest that the activation of GABAA or glycine receptors results in an acute accumulation of Cl- that is enhanced by the depolarization owing to HCO3- efflux, thus shifting E(GABA/gly) to more positive values. A subsequent activation of these receptors would result in a strenghtened depolarization and an enlarged Ca2+ influx that might play a role in the stabilization of inhibitory synapses in the auditory pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号