首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A hydrodynamic study of collagen fibrillogenesis by electric birefringence and quasielastic light scattering
Authors:J C Bernengo  M C Ronziere  P Bezot  C Bezot  D Herbage  A Veis
Abstract:Neutral soluble collagen was extracted from lathyritic rat skin under proteolysis-inhibited conditions. Purified solutions were characterized by electric birefringence and heterodyne beat quasi-elastic light-scattering techniques under conditions where the monomeric form was stable (at 4 degrees C in 0.032 M phosphate buffer at pH 7.04). Solutions were then heated and the birefringence and light scattering followed during the fibrillogenesis reaction. The monomer presents a translational diffusion coefficient of 0.85 X 10(-7) cm2/s and a rotary diffusion coefficient of 1150 +/- 50 s-1; these values are consistent with a rodlike molecular model of 220 +/- 10 nm length and 4 +/- 1 nm diameter, substantially different from electron microscopic values of 290 and 1.5 nm, respectively. We propose that at pH 7.04 and relatively high ionic strength, the collagen monomer unit must exhibit substantial deviation from a completely rigid and extended rodlike structure. During the entire lag phase in a thermally induced fibrillogenesis reaction, the relaxation times for both translational and rotational motion remain virtually unchanged. The monomer polarity is also unchanged, as shown by reverse pulse birefringence data. No intermediate size soluble aggregates, such as dimers or trimers, have been detected between monomer and very large aggregates or fibrils during the process, although early multistep assembly products (dimers, trimers) could have been seen if present. These data suggest a model for fibrillogenesis emphasizing a monomer-related nucleation event, such as internal stiffening or conformational transition, followed by a rapid continuous growth up to large fibrils.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号