首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of grazing intensity on phosphorus spiralling in autotropic streams
Authors:Patrick J. Mulholland  J. Denis Newbold  Jerry W. Elwood  Carole L. Hom
Affiliation:1. Environmental Sciences Division, Oak Ridge National Laboratory, 37830, Oak Ridge, TN, USA
Abstract:The effect of grazing on primary productivity and phosphorus cycling in autotrophic streams was studied using the snail Goniobasis clavaeformes. Snails were added to each of three replicate laboratory stream channels, receiving once-through flow of groundwater, in densities of 2.1, 3.0, and 4.2 g ash free dry mass (AFDM)/m2. A fourth channel received no snails and served as an ungrazed control. Presence of snail grazers resulted in a large reduction in aufwuchs biomass, primary productivity, and biotic phosphorus uptake; a modest reduction in fine particulate organic matter (FPOM); and an increase in the fraction of stream particulate organic matter (POM) exported as seston. Although primary production and aufwuchs biomass continued to decline with increasing snail density, phosphorus uptake increased. This increased phosphorus uptake is attributed to abiotic sorption to inorganic surfaces exposed as a result of efficient removal of aufwuchs at high snail densities. Although snail densities were chosen to bracket the density measured in a natural stream, the experimental densities may result in considerably higher grazing pressure on aufwuchs due to the absence of alternate food sources (e.g., coarse particulate organic matter) usually found in natural streams. Presence of snail grazers increased the spiralling length of phosphorus, primarily by reducing aufwuchs biomass and consequently reducing uptake of phosphorus from the water. Presence of snails also increased downstream transport velocity of phosphorus bound to organic particles. These results follow the patterns predicted in a previous theoretical analysis for mildly phosphorus-limited streams.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号