Efficient recombination-based methods for bacterial artificial chromosome fusion and mutagenesis |
| |
Authors: | Sopher Bryce L La Spada Albert R |
| |
Affiliation: | Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA 98195, USA. |
| |
Abstract: | The availability of genomic sequence information and extensive bacterial artificial chromosome (BAC) libraries for both the mouse and human genomes is ushering in a new era in biological research and disease modeling. To facilitate the study of large mammalian genes in vivo, we have developed: i) a simple lambda bacteriophage-based methodology for recombining overlapping bacterial artificial chromosomes (BACs) into a single larger BAC, and ii) a new methodology for targeting "seamless" mutations into BACs. In the first method, overlapping sequence from one BAC is cloned alongside a selectable marker and placed between unique sequence arms from the terminus of the other BAC to create a targeting construct. Two rounds of recombination-based cloning are then performed. The robustness of this methodology is demonstrated herein by using it to obtain a 254 kb BAC containing the entire human androgen receptor (hAR) gene. In the second method, transient expression of three lambda bacteriophage genes to 'pop-in' a targeting cassette is followed by RecA expression from the targeting vector itself to 'pop-out' the vector backbone. This new "hybrid recombineering" method combines the strengths of the lambda bacteriophage and RecA systems, while avoiding their major weaknesses. Application of this method for introduction of a 162 CAG repeat expansion into the hAR 254kb BAC is shown. With "hybrid recombineering", we believe that the power and utility of the classical 'pop-in/pop-out' approach -- so commonly and efficiently employed in yeast for decades -- can now be achieved with BACs. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|