首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx
Authors:Stevens Andrew P  Hlady Vladimir  Dull Randal O
Affiliation:Department of Bioengineering, Proteins and Polymers at Interface Group, University of Utah, Salt Lake City, Utah, USA.
Abstract:The endothelial glycocalyx is believed to play a major role in capillary permeability by functioning as a macromolecular barrier overlying the intercellular junction. Little is known about the functional attributes of the glycocalyx (i.e., porosity and permeability) or which constituents contribute to its overall structure-function relationship. In this report, we demonstrate the utility of fluorescence correlation spectroscopy (FCS) to measure albumin diffusion rates and concentration profiles above the cell surface and overlying the intercellular junctions of lung capillary endothelial cells. Albumin diffusion rates and concentration profiles were obtained before and after enzymatic digestion of the glycocalyx with pronase, heparanase, or hyaluronidase. The results suggest a structure interacting with albumin located from 1.0 to 2.0 microm above the cell membrane capable of reducing albumin diffusion by 30% while simultaneously increasing albumin concentration fivefold. Digestion of the glycocalyx with pronase or heparanase resulted in only modest changes in albumin diffusion and concentration profiles. Hyaluronidase digestion completely eliminated albumin-glycocalyx interactions. These data also suggest that hyaluronan is a major determinant for albumin interactions with the lung endothelial glycocalyx. Confocal images of heparan sulfate and hyaluronan confirm a cell-surface layer 2-3 mum in thickness, thus supporting FCS measurements. In summary, we report the first use of FCS to probe extracellular structures and further our understanding of the structure-function relationship of the lung microvascular endothelial glycocalyx.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号