首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A "moving metal mechanism" for substrate cleavage by the DNA repair endonuclease APE-1
Authors:Oezguen Numan  Schein Catherine H  Peddi Srinivasa R  Power Trevor D  Izumi Tadahide  Braun Werner
Institution:Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA.
Abstract:Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a "moving metal mechanism" in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inhibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.
Keywords:molecular dynamic simulation  divalent metal ion  BER‐pathway
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号