首页 | 本学科首页   官方微博 | 高级检索  
     


Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in tetrahymena micronuclei
Authors:C. David Allis  Josephine K. Bowen  George N. Abraham  Claiborne V.C. Glover  Martin A. Gorovsky
Affiliation:1. Department of Biology University of Rochester Rochester, New York 14627 USA;1. Department of Medicine University of Rochester Rochester, New York 14627 USA
Abstract:Micronuclei of Tetrahymena thermophila contain two electrophoretically distinct forms of histone H3. The slower migrating micronuclear species, H3S, is indistinguishable from macronuclear H3 by electrophoretic analyses in three gel systems and by partial proteolytic peptide mapping. The faster species, H3F, is unique to micronuclei. Pulse-chase experiments with radioactive amino acids show that H3S is a precursor to H3F. We present evidence that the in vivo processing of H3S into H3F requires cell growth and/or division and may occur regularly each generation at a specific point in the cell cycle. The processing event must occur after H3F is deposited on micronuclear chromatin, since both H3S and H3F can be isolated from sucrose gradient-purified mononucleosomes (Allis, Glover and Gorovsky, 1979). Partial proteolytic peptide mapping coupled with 3H-N-ethylmaleimide labeling suggest that the processing event involves a proteolytic cleavage from the amino terminal end of H3F. Automated sequence analyses of 14C-lysine-labeled macronuclear H3 together with either 3H-lysine-labeled H3S or H3F demonstrated that H3F is derived from H3S by a proteolytic cleavage which removes six residues from the amino terminus. These observations represent the first demonstration of a physiologically regulated proteolytic processing event in histone metabolism.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号