首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein
Authors:J Power  R L Cross  D A Harris
Abstract:The ox heart mitochondrial inhibitor protein may be iodinated with up to 0.8 mol 125I per mol inhibitor with no loss of inhibitory activity, with no change in binding affinity to submitochondrial particles, and without alteration in the response of membrane-bound inhibitor to energisation. Tryptic peptide maps reveal a single labelled peptide, consistent with modification of the single tyrosine residue of the protein. A single type of high-affinity binding site (Kd=96 . 10 (-9)M) for the inhibitor protein has been measured in submitochondrial particles. The concentration of this site is proportional to the amount of membrane-bound F1, and there appears to be one such site per F1 molecule. The ATp hydrolytic activity of submitochondrial particles is inversely proportional to the occupancy of the high-affinity binding site for the inhibitor protein. No evidence is found for a non-inhibitory binding site on the membrane or on other mitochondrial proteins. In intact mitochondria from bovine heart, the inhibitor protein is present in an approx. 1:1 ratio with F1. Submitochondrial particles prepared by sonication of these mitochondria with MgATP contain about 0.75 mol inhibitor protein per mol F1, and show about 25% of the ATPase activity of inhibitor-free submitochondrial particles. Additional inhibitor protein can be bound to these particles to a level of 0.2 mol/mol F1, with consequent loss of ATPase activity. If MgATP is omitted from the medium, or inhibitors of ATP hydrolysis are present, the rate of combination between F1 and its inhibitor protein is very much reduced. The equilibrium level of binding is, however, unaltered. These results suggest the presence of a single, high-affinity, inhibitory binding site for inhibitor protein on membrane-bound F1. The energisation of coupled submitochondrial particles by succinate oxidation or by ATP hydrolysis results in both the dissociation of inhibitor protein into solution, and the activation of ATP hydrolysis. At least 80% of the membrane-bound F1-inhibitor complex responds to this energisation by participating in a new equilibrium between bound and free inhibitor protein. This finding suggests that a delocalised energy pool is important in promoting inhibitor protein release from F1. Dissipation of the electrochemical gradient by uncouplers, or the binding of oligomycin or efrapetin effectively blocks energised release of the inhibitor protein. Conversely, the addition of aurovertin or adenosine 5'--beta, lambda--imido]triphosphate enhances energy-driven release. The mode of action of various inhibitors on binding and energised release of the protein inhibitor is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号