首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Noninvasive Identification of Viable Cell Populations in Docetaxel-Treated Breast Tumors Using Ferritin-Based Magnetic Resonance Imaging
Authors:YoonSeok Choi  Hoe Suk Kim  Kyoung-Won Cho  Kyung-Min Lee  Yoon Jung Yi  Sung-Jong Eun  Hyun Jin Kim  Jisu Woo  Seung Hong Choi  Taeg-Keun Whangbo  ChulSoo Choi  Dong-Young Noh  Woo Kyung Moon
Abstract:

Background

Cancer stem cells (CSCs) are highly tumorigenic and are responsible for tumor progression and chemoresistance. Noninvasive imaging methods for the visualization of CSC populations within tumors in vivo will have a considerable impact on the development of new CSC-targeting therapeutics.

Methodology/Principal Findings

In this study, human breast cancer stem cells (BCSCs) transduced with dual reporter genes (human ferritin heavy chain FTH] and enhanced green fluorescence protein EGFP]) were transplanted into NOD/SCID mice to allow noninvasive tracking of BCSC-derived populations. No changes in the properties of the BCSCs were observed due to ferritin overexpression. Magnetic resonance imaging (MRI) revealed significantly different signal intensities (R2* values) between BCSCs and FTH-BCSCs in vitro and in vivo. In addition, distinct populations of pixels with high R2* values were detected in docetaxel-treated FTH-BCSC tumors compared with control tumors, even before the tumor sizes changed. Histological analysis revealed that areas showing high R2* values in docetaxel-treated FTH-BCSC tumors by MRI contained EGFP+/FTH+ viable cell populations with high percentages of CD44+/CD24− cells.

Conclusions/Significance

These findings suggest that ferritin-based MRI, which provides high spatial resolution and tissue contrast, can be used as a reliable method to identify viable cell populations derived from BCSCs after chemotherapy and may serve as a new tool to monitor the efficacy of CSC-targeting therapies in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号