Comparison of measurement accuracy between two wrist goniometer systems during pronation and supination. |
| |
Authors: | Peter W Johnson Per Jonsson Mats Hagberg |
| |
Affiliation: | Department of Environmental Health, University of Washington, Box 357234, Seattle, WA 98195, USA. petej@u.wahington.edu |
| |
Abstract: | Pronation and supination have been shown to affect wrist goniometer measurement accuracy. The purpose of this study was to compare differences in measurement accuracy between a commonly used biaxial, single transducer wrist goniometer (System A) and a biaxial, two-transducer wrist goniometer (System B) over a wide range of pronation and supination (P/S) positions. Eight subjects moved their wrist between -40 and 40 degrees of flexion/extension (F/E) and -10 and 20 degrees of radial/ulnar (R/U) deviation in four different P/S positions: 90 degrees pronation; 45 degrees pronation; 0 degrees neutral and 45 degrees supination. System A was prone to more R/U crosstalk than System B and the amount of crosstalk was dependent on the P/S position. F/E crosstalk was present with both goniometer systems and was also shown to be dependent on P/S. When moving from pronation to supination, both systems experienced a similar extension offset error; however R/U offset errors were roughly equal in magnitude but opposite in direction. The calibration position will affect wrist angle measurements and the magnitude and direction of measurement errors. To minimize offset errors, the goniometer systems should be calibrated in the P/S posture most likely to be encountered during measurement. Differences in goniometer design and application accounted for the performance differences. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|