首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Delineating landscape-scale processes of hydrology and plant dispersal for species-rich fen conservation: the Operational Landscape Unit approach
Authors:Jos T A Verhoeven  Boudewijn Beltman  Ron Janssen  Merel B Soons
Institution:1.Ecology and Biodiversity, Department of Biology,Utrecht University,Utrecht,The Netherlands;2.Spatial Information Laboratory, Department of Spatial Economy,Vrije Universiteit,Amsterdam,The Netherlands
Abstract:Restoration and conservation of species-rich nature reserves requires inclusion of landscape-scale connections and transport processes such as hydrologic flows and species dispersal. These are important because they provide suitable habitat conditions and an adequate species pool. This study aimed at identifying the key hydrologic flows and plant dispersal processes affecting a landscape with species-rich fen reserves where restoration measures are carried out to set back succession. It also intended to use this information for delineating the area relevant for conservation planning on an Operational Landscape Unit map. The study was carried out for complexes of fen ponds in former turbaries in the Vechtplassen area, The Netherlands. A number of recent insights on plant dispersal were integrated with knowledge on hydrologic flows in the present approach. The results showed that groundwater discharge to ensure mesotrophic, base-rich conditions, should be enhanced by restoring the groundwater recharge areas NE of the reserves. A nearby lake with suitable water chemistry was also identified as a key source of surface water to feed the fens in dry periods. Water dispersal was identified as important within the fen reserves, whereas dispersal by daily migrating dabbling ducks, typically occurring over 2–3 km, was the most important route connecting the reserves with the surrounding landscape. The delineation of the Operational Landscape Unit for this region provides a basis for conservation and restoration that take fundamental landscape connections and transport processes into account. This unique approach simultaneously considers hydrological transport processes as well as species dispersal in the larger landscape beyond the reserves themselves and therefore leads to greater success of restoration and conservation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号