首页 | 本学科首页   官方微博 | 高级检索  
     


Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs.
Authors:Lothar A Schwarte  Artur Fournell  Jasper van Bommel  Can Ince
Affiliation:Department of Physiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
Abstract:Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines. The latter may be due to the impaired ability of erythrocytes to off-load oxygen within the microcirculation, thus yielding low tissue/plasma Po(2) but elevated microcirculatory hemoglobin oxygen (HbO(2)) saturations. Alternatively, oxygen shunting may also be due to reduced erythrocyte deformability, hindering the ability of erythrocytes to enter capillaries. Anesthetized pigs underwent ANH (20, 40, 60, and 90 ml/kg hydroxyethyl starch; ANH group: n = 10; controls: n = 5). We measured systemic and mesenteric perfusion. Microvascular intestinal oxygenation was measured independently by remission spectrophotometry [microcirculatory HbO(2) saturation (muHbO(2))] and palladium-porphyrin phosphorescence quenching [microcirculatory oxygen pressure in plasma/tissue (muPo(2))]. Microcirculatory oxygen shunting was assessed as the disparity between mucosal and mesenteric venous HbO(2) saturation (HbO(2)-gap). Erythrocyte deformability was measured as shear stress-induced cell elongation (LORCA difractometer). ANH reduced hemoglobin concentration from 8.1 to 2.2 g/dl. Relative mesenteric perfusion decreased (decreased mesenteric/systemic perfusion fraction). A paralleled reduction occurred in mucosal muHbO(2) (68 +/- 2 to 41 +/- 3%) and muPo(2) (28 +/- 1 to 17 +/- 1 Torr). Thus the proposed constellation indicative for oxygen off-load deficits (sustained muHbO(2) at decreased muPo(2)) did not develop. A twofold increase in the HbO(2)-gap indicated increasing intestinal microcirculatory oxygen shunting. Significant impairment in erythrocyte deformability developed during ANH. We conclude that reduced intestinal oxygenation during ANH is, in addition to redistribution of oxygen delivery away from the intestines, associated with oxygen shunting within the intestines. This shunting appears to be not primarily caused by oxygen off-load deficit but rather by oxygen/erythrocytes bypassing capillaries, wherein a potential contributor is impaired erythrocyte deformability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号