首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unraveling microbe-mediated interactions between mosquito larvae in a laboratory microcosm
Authors:Andrea Egizi  Peter J Morin  Dina M Fonseca
Institution:1. Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
2. Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Ave, New Brunswick, NJ, 08901, USA
3. Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd., New Brunswick, NJ, 08901, USA
Abstract:Interspecies interactions have important impacts on communities and when multiple trophic levels are involved, effects can be complex and indirect. For mosquitoes, interactions experienced as larvae affect adult attributes such as survivorship, reproductive output, and longevity, factors that can affect their ability to vector disease. We examined how larvae of two ecologically distinct mosquito species, Aedes japonicus japonicus and Culex quinquefasciatus, interact at different temperatures (17 and 27 °C) and at different relative densities. We also quantified abundances of bacteria and protozoan flagellates to uncover how changes in the microbial community affect the outcome of the two mosquitoes’ interaction. At 17 °C, survival and size of both mosquito species were not affected by the other’s presence. Cx. quinquefasciatus was strongly affected by intraspecific, but not interspecific, competition at both temperatures. At 27 °C, Ae. j. japonicus larvae experienced 100 % mortality in treatments by themselves and treatments where Cx. quinquefasciatus was abundant, surviving only in the presence of low densities of Cx. quinquefasciatus. Both the total bacteria count and counts of a protozoan flagellate identified as Spumella spp. decreased with increasing numbers of Cx. quinquefasciatus. We postulate that at 27 °C, the survival of Ae. j. japonicus depends on the interaction between Cx. quinquefasciatus and the microbial community. This study demonstrates that one mosquito species may alter the microbial community in ways that indirectly influence another mosquito species’ larval survival, and by extension adult abundance and potential disease transmission.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号