首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes
Authors:Pedro Leão  Lucas Le Nagard  Hao Yuan  Jefferson Cypriano  Inácio Da Silva-Neto  Dennis A. Bazylinski  Daniel Acosta-Avalos  Henrique L. de Barros  Adam P. Hitchcock  Ulysses Lins  Fernanda Abreu
Affiliation:1. Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;2. Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Canada;3. Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;4. School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, USA;5. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
Abstract:The most well-recognized magnetoreception behaviour is that of the magnetotactic bacteria (MTB), which synthesize membrane-bounded magnetic nanocrystals called magnetosomes via a biologically controlled process. The magnetic minerals identified in prokaryotic magnetosomes are magnetite (Fe3O4) and greigite (Fe3S4). Magnetosome crystals, regardless of composition, have consistent, species-specific morphologies and single-domain size range. Because of these features, magnetosome magnetite crystals possess specific properties in comparison to abiotic, chemically synthesized magnetite. Despite numerous discoveries regarding MTB phylogeny over the last decades, this diversity is still considered underestimated. Characterization of magnetotactic microorganisms is important as it might provide insights into the origin and establishment of magnetoreception in general, including eukaryotes. Here, we describe the magnetotactic behaviour and characterize the magnetosomes from a flagellated protist using culture-independent methods. Results strongly suggest that, unlike previously described magnetotactic protists, this flagellate is capable of biomineralizing its own anisotropic magnetite magnetosomes, which are aligned in complex aggregations of multiple chains within the cell. This organism has a similar response to magnetic field inversions as MTB. Therefore, this eukaryotic species might represent an early origin of magnetoreception based on magnetite biomineralization. It should add to the definition of parameters and criteria to classify biogenic magnetite in the fossil record.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号