Abstract: | It has previously been reported that brachiating primates, particularly gibbons, are characterized by distinctively straight forelimb long bones, yet no hypotheses have been proposed to explain why straight limb bones may be adaptive to suspensory locomotion. This study explores quantitatively the curvature of the long bones in 13 species of anthropoid primates and analyzes the functional consequences of curvature in biomechanical terms. These analyses demonstrate that, whereas the humeri of gibbons and spider monkeys are functionally less curved than those of other taxa, the ulnae of brachiators are neither more nor less curved than those of other anthropoids, and the gibbon radius is far more curved than would be predicted from body size alone. The humerus is likely significantly less curved in brachiators because of its torsion-dominated loading regime and the greatly increased stress magnitude developed in torsionally loaded curved beams. The large curvature of the radius is localized in the region of attachment of the supinator muscle. Analysis presented here of muscle mass allometry in catarrhines demonstrates that gibbons are characterized by an extremely massive supinator, and the large radial curvature is therefore most likely due to forearm muscle mechanics. This study also demonstrates that the overall pattern of limb bone curvature for anthropoids is distinct from the pattern reported for mammals as a whole. This distinctive scaling relationship may be related to the increased length of the limb bones of primates in comparison to other mammals. |