首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A ligand binding model of counterion condensation to finite length polyelectrolytes
Authors:T G Dewey
Abstract:A ligand binding model of counterion association in finite length polyelectrolytes is presented. This model introduces counterion condensation features into a binding formalism. It agrees well with the predictions of other finite length models and is consistent with experimental data on helix–coil melting transitions for short nucleic acid oligomers. This model uses a discrete charge distribution for the polyelectrolyte. An expression for the electrostatic self-energy of finite length polyelectrolytes is derived using the Euler–Maclaurin sum formula. This sum is shown to be accurate over a wide range of salt concentrations. This electrostatic term is used in an energy minimization analysis. The energy minimization is solved analytically using a Lagrange inversion formula. This general procedure gives a rapidly convergent series and requires no assumptions with regard to “limiting law” behavior. However, when used in the Manning minimization formalism (1977) Biophysical Chemistry, 24 , 2086], the volume of the condensed phase becomes unrealistically large at low ionic strength. The ligand binding model does not have a condensed phase volume as a parameter. It provides a single expression that agrees both with Manning's theory and with the theory of Ramanathan and Woodbury (1982) Journal of Chemical Physics 77 , 4133] under the respective conditions of these theories.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号