首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation by light of chlorophyll synthesis in the cotyledons of Scots pine (Pinus sylvestris) seedlings
Authors:Helga Drumm-Herrel  Hans Mohr
Institution:Biological Institute II, Univ. of Freiburg, Schánzlestr. 1, D-79104 Freiburg L Br., Germany.
Abstract:Seedlings of gymnosperms, unlike angiosperms, synthesize chlorophyll(ide) (Chl) in darkness (D). In Scots pine cotyledons ( Pinus sylvestris L.) Chl accumulation ceases in D at a low level but Chl accumulation is strongly increased by light, red light (R) being more effective than blue light (B), whereas in Pinus maritima Chi synthesis is almost light-independent. In Scots pine the capacity to form Chl can be increased by R pulses, fully reversible by far-red light, demonstrating the involvement of phytochrome. However, when B- or R–grown seedlings were transferred to D, Chl accumulation stopped immediately irrespective of the level of Pfr (far-red light absorbing form of phytochrome), indicating that the conversion of protochlorophyllide (PChl) is light-dependent. Dose response curves in R and B and simultaneous irradiation with R and B show that R and B are perceived by separate photoreceptors. The immunodetected NADPH-dependent protochlorophyllide oxidoreductase (POR, EC 1.6.99.1), assumed to regulate light-dependent Chl synthesis in angiosperms, is not correlated with the capacity of gymnosperm Chi accumulation in darkness. While two FOR bands could be separated in extracts from dark grown material (38 and 36 kDa) of Pinus sylvestris and P. maritima , only the 38 kDa band disappeared consistently in the light. However. the significance of the more light resistant 36 kDa band for chlorophyll synthesis remains unclear as well.
Keywords:Blue light photoreceptor  chlorophyll synthesis  light regulation  NADPH-protochlorophyllide oxidoreductase  phytochrome              Pinus maritima            Pinus sylvestris  Scots pine seedling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号